高级检索

基于多尺度通道和时空信息融合的SST预报方法研究

A multi-scale channel and spatio-temporal information fusion-based method for SST forecasting

  • 摘要: 海表面温度(sea surface temperature,SST)不仅是海洋状态的一个关键指标,还直接影响大气条件,进而影响全球和区域的天气系统与气候变化。因此,准确预报SST对于维护生态平衡、促进经济发展和应对气候变化具有不可估量的价值。为了准确地对SST进行预报,本研究在卷积长短期记忆网络(convolutional long short-term memory,ConvLSTM)模型的基础上,提出了一种基于多尺度通道和时空信息融合的深度学习模型(multi-scale channels and spatiotemporal fusion,MCSF)。该模型首先经过多尺度特征提取模块,从多个尺度对SST数据中的区域、边缘等特征进行提取,随后通过卷积块注意力残差模块对信息进行有效的筛选,利用卷积长短期记忆网络提取长时间依赖特征,最后由卷积2D层输出1 d的预报结果,通过滚动预报实现多天的SST预报。利用MCSF模型在南海区域进行了SST的短期预报(预报未来5 d)和中期预报(预报未来20 d),通过不同的时间窗口进行实验,确定短期预报和中期预报的时间窗口分别为20 d和40 d。实验结果表明,MCSF模型相比于ConvLSTM模型,预报第5天和第20天的RMSE分别降低了11.9%、7.6%,MAE分别降低了16.7%、16.9%,这证明所提出的MCSF模型可以有效提升SST的预报精度。

     

    Abstract: Sea surface temperature (SST) is not only a key indicator of oceanic state but also directly affects atmospheric dynamics, thereby impacting global and regional weather systems and climate change. Therefore, accurate SST predictions of inestimable value for maintaining ecological balance, promoting economic development, and addressing climate challenges. In order to achieve precise SST predictions, this study proposes a deep learning model based on multi-scale channels and spatio-temporal fusion ( MCSF) on the basis of ConvLSTM. The MCSF model first employs a multi-scale feature extraction module to extract capture regional and edge features from SST data across multiple scales. Then, it utilizes a convolutional block residual attention module to effectively filter the information, followed by a convolutional long-short memory network to extract longtime-dependent features. Finally, a convolutional 2D layer outputs a one-day prediction, with multi-day prediction generated through rolling prediction. The MCSF model was applied to the South China Sea for short-term (5 d) and medium-term (20 d) SST forecasting. Experiments with varying time windows determined optimal input periods of 20 d and 40 d for short- and medium-term forecasts, respectively. Results demonstrate that compared to the ConvLSTM model, the MCSF model reduces the RMSE by 11.9% and 7.6%, and the MAE by 16.7% and 16.9% for the 5th- and 20th-day forecasts, respectively. These findings confirm that the proposed MCSF model significantly improves SST forecasting accuracy.

     

/

返回文章
返回